RelevanceEvaluatorPlus
- class trove.evaluation.relevance_evaluator.RelevanceEvaluatorPlus(query_relevance, measures, relevance_level=1)
- __init__(query_relevance, measures, relevance_level=1)
Expands
pytrec_eval.RelevanceEvaluator
with new metrics.User facing API is the same as
pytrec_eval.RelevanceEvaluator
and should be a drop-in replacement. Seepytrec_eval.RelevanceEvaluator
for more details.- Parameters:
query_relevance (Dict[str, Dict[str, Dict[str, int]]]) – see
pytrec_eval.RelevanceEvaluator.__init__()
measures (Union[Set[str], List[str]]) – see
pytrec_eval.RelevanceEvaluator.__init__()
relevance_level (int) – see
pytrec_eval.RelevanceEvaluator.__init__()
- evaluate(scores)
Calculate IR metrics for the given similarity scores.
User facing API is the same as
pytrec_eval.RelevanceEvaluator.evaluate()
and should be a drop-in replacement. Seepytrec_eval.RelevanceEvaluator.evaluate()
for more details.- Parameters:
scores (Dict[str, Dict[str, Dict[str, float]]]) – predicted similarity scores. see
pytrec_eval.RelevanceEvaluator.evaluate()
- Return type:
Dict
[str
,Dict
[str
,Dict
[str
,float
]]]- Returns:
a mapping where
output[qid][metric_name]
is the value of “metric_name” for query “qid”. seepytrec_eval.RelevanceEvaluator.evaluate()